
OBDPro OBD to RS232 Interpreter

http://www.obdpros.com
Note: Portions of the datasheet; specifically the sections “OBD commands” and general OBD
discussions on setting headers and monitoring messages have been adapted from the ELM 327
datasheet available at www.elmelectronics.com for use with their products.

Introduction

Almost all automobiles manufactured after
1996 provide an interface from which test
equipment can obtain diagnostic information.
The data transfer on these interfaces follow
several standards, The OBDPro interface is

designed to act as a bridge between these On-
Board Diagnostics (OBD) ports and standard
PC RS232 ports. The interface can
automatically sense and convert the nine most
common protocols in use today.

Key Features

• Supports 9 OBDII protocols
• Automatically searches for a protocol
• Fully configurable with AT commands
• Configurable RS232 speeds
 (9600 to 128000 bps)
• Voltage input for battery monitoring

Overview

The following sections will describe the
detailed operation of the OBDPro interface.
There are a number of PC based clients in the
market that will work seamlessly with this
interface. A list of some of the most commonly
used products is given in the appendix.

These clients talk to the Interface using simple
text commands which means that you could

talk to the chip by just typing in the commands
at a terminal program connected to the
interface via a Serial cable. The AT commands
implemented by the OBDPro have been
chosen so as to make the chip compatible
with similar chips available on the market such
as ELM327 and AGV OBD interface

Communicating with the OBDPro interface

The OBDPro interface uses a standard RS232
type serial connection to communicate with the
user. The data rate when the unit is shipped
defaults to 9600 bauds, 8 databits, no parity
and 1 stop bit, but the data rates are
customizable using the ATSCS command.

The OBDPro interface has two 9 pin serial
connectors, (The USB version has a 9 pin
serial for the OBD Cable and a USB connector
for the PC) the end labeled “car” plugs into the
black OBD cable whereas the other end
labeled “pc” plugs into the computer via a
straight through serial cable. When the
OBDPro interface is powered up, the four
LED’s will blink (the pattern will depend on the

current baud rate – refer to ATSCS and
ATWCS commands in the datasheet)and will
then send the message
OBDPro v1.0
>

This indicates that the computer connections
and terminal software settings are correct. The
‘>’ character displayed above is the prompt
character indicating that the device is ready to
receive commands over the RS232 port.
Messages sent on the serial port can either be
intended for the interface’s internal use, or for
reformatting and passing on to the OBD bus.
The interface determines where the received
characters are to be directed by analyzing the

OBDPro

http://www.obdpros.com

entire string once the complete message has
been received. Commands for the OBDPro’s
internal use will always begin with the
characters ‘AT’ (similar to modem commands),
while commands for the OBD bus can only
contain the ASCII codes for hexadecimal digits
(0 to 9 and A to F). All messages to the OBD
Prompt must be terminated with a carriage
return character (hex ‘0D’) before it will be
acted upon. If a command has been started
but not terminated by a ‘0D’ it will be aborted
after 20 seconds of inactivity and the interface
will print a question mark (‘?’) to indicate an
error in entering the command.

Messages that are not understood by the
OBDPro (syntax errors) will always be
indicated by a single question mark “?”. These
include incomplete messages, incorrect AT
commands, or invalid hexadecimal digit
strings. When sending OBD II commands
meant for the vehicle the OBDPro interface
does not check for validity of the message.
The interface only checks to ensure that an
even number of hex digits were received, but

cannot check if a command would be
considered valid by the vehicle. (When a
command is not recognized by the vehicle it
will not return any data and the interface will
send back a NO DATA string).
When sending commands; users should
always wait for the prompt character (‘>’)
before sending the next command.

Couple of notes on command syntax:

• The interface is not case-sensitive, so

typing an OBD command such as ABCD is
equivalent to saying abCd

• Space characters and all control
characters (tab, linefeed, etc.) in the input
are ignored, so they can be inserted
anywhere to improve readability.

• Sending a single carriage return character
by itself will repeat the last command; this
comes in handy when one needs to
continue requesting the same data from
the vehicle. E.g. dynamically changing data
such as engine RPM.

AT Commands

Introduction:

Several parameters within the OBDPro
interface can be adjusted in order to
modify its behavior. These do not normally
have to be changed before attempting to
talk to the vehicle, but offer flexibility in
using the interface. For example by
turning off the character echo mode or
adjusting a timeout value a slight increase
in speed might be achieved.

In some instances the user might want to
change the header bytes to address a
specific controller within the vehicle. In
order to do this, internal ‘AT’ commands
must be issued.

The OBDPro constantly monitors the data
sent by the PC, looking for messages that
begin with the character ‘A’ followed by

the character ‘T’. If found; the next
characters will be interpreted as internal
configuration or ‘AT’ commands, and will
be executed upon receipt of a terminating
carriage return character.

The OBDPro will reply with the characters
‘OK’ on the successful completion of a
command, so the user knows that it has
been executed. Some of the commands
allow numbers as arguments to set the
internal values. These will always be
hexadecimal numbers which must
generally be provided in pairs. For the
on/off types of commands, the second
character is the number 1 or 0, 1 meaning
“on” and 0 meaning “off”

OBDPro

http://www.obdpros.com

ATBI [Bypass Initialization sequence]

This command allows an OBD protocol to
be made active without requiring any
initialization or handshaking. Use caution
while using this command as some vehicles
(mainly ISO protocols) will not respond to
OBD commands without initialization.

ATCF hhh [set the CAN ID Filter to hhh]

Tha CAN filter works along with the CAN
mask to determine the vehicle messages
that should be displayed. As the OBDPro
receives each message, the incoming CAN
ID bits are compared to the CAN Filter bits
(when the mask bit is a ‘1’). If all of the
relevant bits match, the message will be
accepted, and processed by the interface,
otherwise it will be discarded. This three
nibble version of the CAN Filter command is
a convenient way to set the 11 bit ID on 11
bit CAN systems. Only the rightmost 11 bits
of the provided nibbles are used, and the
most significant bit is ignored.

The Can filter and masks can be set at any
time even when the Can protocol is not
active, if the filters and masks are set
incorrectly the Scantool will typically
respond with “NO DATA” upon sending an
OBD command. In this case you can restore
the original filters and masks by issuing the
ATZ command.

ATCF hh hh hh hh [set the CAN ID Filter
to hhhhhhhh]

This command allows all 29 bits of the CAN
Filter to be set at once. The 3 most
significant bits will always be ignored, and
can be given any value. This command can
also be used to enter the 11 bit ID filters, in
which case you would need to issue the
command as ATCF 00 00 0h hh.

CFC0 and CFC1 [CAN Flow Control off or
on]

The ISO 15765-4 protocol expects a “Flow
Control” message to always be sent in
response to a “First Frame” message. The
interface automatically sends these. The AT
CFC0 command prevents sending of the
flow control message. The default setting is
CFC1 - Flow Controls on.

Note that during monitoring (ATMA, ATMR,
or ATMT), no Flow Control messages are
sent regardless of the CFC option setting.

ATCM hhh [set the CAN ID Mask to hhh]

Since the CAN bus is extremely busy; at
any given time the user would be interested
in only a subset of the messages being
transmitted, instructing the OBDPro
interface to only look at messages with
specific CAN ID’s is accomplished by the
filter, which works in conjunction with the
mask. A mask is a group of bits that indicate
which bits in the filter are relevant, and
which ones can be ignored. A ‘must match’
condition is indicated by setting a mask bit
to '1', while a 'don't care' condition is
indicated by setting a bit to '0'. Similar to te
Can filter command this three digit variation
of the ATCM command is used to provide
mask values for 11 bit ID systems (the most
significant bit is always ignored).

ATCM hh hh hh hh [set the CAN ID Mask
to hhhhhhhh]

This command is used to assign mask
values for 29 bit ID systems. You could also
assign the 11 bit CAN mask using this
command just use leading zero’s except for
the last three nibbles so the command
would be

Note: The three most significant bits that
you provide in the first digit will be ignored.

ATCP hh [set CAN Priority bits to hh]

OBDPro

http://www.obdpros.com

This command is used to set the five most
significant bits in a 29 bit CAN ID word (the
other 24 bits are set with the ATSH
command). The default value for these
priority bits is hex 18.

ATCV dddd [Calibrate the Voltage to dd.dd
volts]

The interface has a built in voltmeter to
measure the battery voltage of the vehicle
it’s hooked up to. The voltage reading
shown by the interface on receiving the
ATRV command can be calibrated with this
command. The argument (‘dddd’) must
always be provided as 4 digits, with no
decimal point (it assumes that a decimal
place is between the second and the third
digits).

To use this calibration feature, use an
accurate voltmeter to read the actual input
voltage. If, for example, the interface
consistently says the voltage is 12.6V when
you measure 12.2 volts, simply issue AT CV
1220, and the device will recalibrate itself
and subsequent ATRV commands will
display 12.2 volts. If you use a test voltage
that is less than 10 volts, remember to add
a leading zero (that is, 8.1 volts should be
entered as ATCV 0810).

ATD [set all to Defaults]
This command is used to set the options to
the default (or factory) settings, Any settings
that the user had made for custom headers,
filters, or masks will be restored to their
default values, and all timer settings will
also be restored to their defaults.

ATDP [Describe the current Protocol]

The OBDPro interface automatically
determines the appropriate OBD protocol to
use for each vehicle that it is connected to.
When the interface connects to a vehicle,
however, it returns only the data requested,
and does not report the protocol found. The
ATDP command is used to display the
current protocol that the OBDPro Interface
is set to. If the automatic option is also

selected, the protocol will show the word
"AUTO" before it, followed by the protocol.

Note that the actual protocol names are
displayed, not the numbers used by the
protocol setting commands.

ATDPN [Describe the Protocol by Number]

This command is similar to the ATDP
command, but it returns a number which
represents the current protocol. If the
automatic search function is also enabled,
the number will be preceded with the letter
‘A’. The number is the same one that is
used with the ATSP (set protocol) command

ATE0 and ATE1 [Echo off (0) or on(1)]

These commands control whether or not
characters received on the serial port are
re-transmitted (or echoed) back to the host
computer. To reduce traffic on the RS232
bus, you can turn echo off by issuing ATE0.
The default is echo on.

ATH0 and ATH1 [Headers off (0) or on(1)]

All the OBD protocol messages have a
header section which is normally not shown
by the interface but can be by issuing the
ATH1 command. Turning the headers on
actually shows more than just the header
bytes - you will see the complete message
as transmitted, including the check-
digits,and PCI bytes.

In the case of CAN protocol currently we do
not display the CAN data length code
(DLC), the CAN CRC.

Also in case of J1850 PWM, the IFR byte
used to acknowledge messages is not
shown.

ATI [Identify yourself]
Issuing this command causes the interface
to print the startup product ID string
(currently “ELM327 v1.0a compatible –

OBDPro

http://www.obdpros.com

OBDPro v1.0”). The PC software uses this
to determine which interface it is talking to.

ATL0 and ATL1 [Linefeeds off (0) or on(1)]

If the ATL1 is issued, linefeeds will be
generated after every carriage return
character, and for ATL0, it will be off.
Typically leave linefeeds on (the default) if
you are using a terminal program

To reduce the communications overhead,
OBD Software packages should turn
linefeeds off. The interface always defaults
to linefeeds on when initially powered up.

ATMA [Monitor All messages]

This command puts the OBDPro interface
into a bus monitoring mode where it
displays all messages that is sees on the
OBD bus. This continues indefinitely until
stopped by activity on the Serial input. To
stop the monitoring, send a single character
and wait for the interface to respond with a
prompt character (‘>’).

The character used to abort the monitoring
will be discarded and will not be interpreted
as part of the next command.

ATMR hh [Monitor for Receiver hh]

This command puts the OBDPro interface
into a bus monitoring mode, where it only
displays messages that were sent to the
hex address given by hh. These are
messages that have the value hh in the
second byte of a traditional three byte OBD
header, in bits 8 to 15 of a 29 bit CAN ID, or
in bits 8 to 10 of an 11 bit CAN ID. Any
single RS232 character aborts the
monitoring.

ATMT hh [Monitor for Transmitter hh]

This command puts the OBDPro interface
into a bus monitoring mode where it only
displays messages sent by transmitter

address hh. These are messages that found
have the hh value in the third byte of a
traditional three byte OBD header, or in bits
0 to 7 for CAN systems. Any RS232 activity
(single character) aborts the monitoring.

ATR0 and ATR1 [Responses off (0) or
on(1)]

These commands control the OBDPro’s
automatic display of responses. If
responses have been turned off, the
OBDPro will not wait for a reply from the
vehicle after sending a request, and will
return immediately to wait for the next
RS232 command. The default is R1, or
responses on.

ATRV [Read the input Voltage]

This command initiates reading the voltage
powering the OBDPro interface. The
interface is capable of measuring a voltage
from 4.5 volts up to about 20V, with an
uncalibrated accuracy of about 2%. Please
refer to the ATCV command for details on
calibrating the reported voltage.

ATSCS h [Set Communications Speed]

This command allows the user to switch the
current RS-232 baud rate to one of the
values listed below.

h Speed
1 9600
2 14400
3 19200
4 38400
5 56600
6 115200
7 128000

The Baud rate can be saved using the
ATWCS command. The OBDPro interface
will respond with “OK” at the old speed,
displays the prompt character (‘>’), and then
switch to the new speed. The factory default

OBDPro

http://www.obdpros.com

speed if 9600 baud to ensure compatibility
with existing software.

If the new communications speed is not
saved via the ATWCS command the
OBDPro will revert to the old baud rate on
the next reset.

When the OBDPro is powered up the front
led’s will indicate the communication speed
that the interface is set to for two seconds.

 PC CAR
Speed TX RX PWR TX RX

9600 ON OFF ON OFF OFF
14400 OFF ON ON OFF OFF
19200 OFF OFF ON ON OFF
38400 OFF OFF ON OFF ON
56600 ON ON ON OFF OFF

115200 ON ON ON ON OFF
128000 ON ON ON ON ON

ATSH xx yy zz [Set the Header to xx yy zz
]

This command enables the user to set their
own header bytes. The header bytes are
normally assigned values based on the
current protocol (and are not required to be
adjusted), but when you want to address
manufacturer specific modules using
physical addressing you may need to
change the default values. The value of hex
digits xx will be used for the first or
priority/type byte, yy will be used for the
second or receiver/target byte, and zz will
be used for the third or transmitter/source
byte.

These remain in effect until set again, or
until restored to their default values with the
ATD, or ATZ commands. This command is
used to assign all header bytes, whether
they are for a J1850, ISO 9141, ISO 14230,
or a CAN system. The CAN systems will
use these three bytes to fill bits 0 to 23 of
the ID word (for a 29 bit ID), or will use only
the rightmost 11 bits for an 11 bit CAN ID.
The additional 5 bits needed for a 29 bit

system are provided through the ATCP
command (since they rarely change).

ATSH xyz [Set the Header to 00 0x yz]

Entering an 11 bit CAN ID word (header)
requires that extra leading zeros be added
(eg. AT SH 00 07 DF). This command
provides a simpler way to set the header.
The SH xyz AT command accepts a three
digit argument, takes only the right-most 11
bits from that, adds leading zeros, and
stores the result in the header storage
locations for you. As an example, AT SH
7DF would set the CAN ID to hex 7DF
which is used by 11 bit CAN OBD.

ATSP h [Set Protocol to h]

This command is used to force the interface
to use a particular protocol when
sending/receiving messages from the
vehicle, issuing this command also makes
this protocol the default.

Currently, the valid protocols are:
0 - Automatic
1 - SAE J1850 PWM (41.6 Kbaud)
2 - SAE J1850 VPW (10.4 Kbaud)
3 - ISO 9141-2 (5 baud init, 10.4 Kbaud)
4 - ISO 14230-4 KWP (5 baud init, 10.4
Kbaud)
5 - ISO 14230-4 KWP (fast init, 10.4 Kbaud)
6 - ISO 15765-4 CAN (11 bit ID, 500 Kbaud)
7 - ISO 15765-4 CAN (29 bit ID, 500 Kbaud)
8 - ISO 15765-4 CAN (11 bit ID, 250 Kbaud)
9 - ISO 15765-4 CAN (29 bit ID, 250 Kbaud)

The Automatic selection (protocol 0)
instructs OBDPro to try all protocols, when
looking for a valid one. It will first try protocol
1, then will sequence through each of the
others, until the correct one used by the
vehicle is identified.

If a non zero protocol is selected with this
command (eg. ATSP 3), that protocol will
become the default. Failure to initiate a
connection in this situation will result in
responses such as BUS INIT: ...ERROR. If
you know the protocol used by your vehicle;

OBDPro

http://www.obdpros.com

setting the protocol manually saves time in
trying to detect the protocol.

ATSP Ah [Set Protocol to Auto, h]

This is a variation of the ATSP command
and allows you to set a starting (default)
protocol, while retaining the ability to
automatically search for a valid protocol on
a failure to connect. For example, if your
vehicle is J1850 VPW, but you want to
occasionally use the OBDPro scantool on
other vehicles, you would issue command
AT SP A2. The default protocol will then be
2, but with the ability to automatically search
for other protocols.

ATST hh [Set Timeout to hh]

After sending a request, the OBDPro waits
a preset time before declaring that there
was no response from the vehicle (the ‘NO
DATA’ response). Even if there was a
response, the OBDPro will wait this time to
be sure that there are no more responses
coming. The ATST timeout setting controls
the amount of time that the interface waits.

The actual time that the interface waits is 4
msec x hh, so passing a value of FF would
result in a maximum time out of just over
one second. A value of 00 sets the timeout
to the default value of 200 ms.

Note: The 200 ms is an extremely
conservative number some of the protocols
specify a much shorter timeout for
responses, you can speed up the response
times by experimenting with reduced
timeout values.

ATSW hh [Set Wakeup to hh]

For the ISO 9141 & ISO 14230 protocols;
once a data connection is made with a
vehicle, there needs to be a data flow every
few seconds or the connection will
terminate. The OBDPro automatically
generates keep alive messages to keep the
communications link “alive”

The time interval between these periodic
‘wakeup’ messages can be adjusted in 20
msec increments using the AT SW hh
command, where hh is any hexadecimal
value from 00 to FF.

A value of FF (decimal 255) results in the
maximum possible delay of just over 5
seconds. The default setting provides a
nominal delay of 3 seconds between
messages. The value 00 will stop all
periodic messages. This should be used
with caution as it could result in a
NO_DATA message if the vehicle
terminates the connection.

ATWCS [Write Communications Speed]

This command saves the current baud rate
in nonvolatile memory.

To set the default speed first change the
current speed (Please see the ATSCS
command), make sure communication is
possible at this new data rate, then issue
the ATWS command.

Example:
>ATSCS 4
OK
>AT
OK
>ATWCS
OK
>

In the example above, we’re switching to
38,400 baud speed, making sure that we
can communicate with the interface by
issuing the AT command and reading the
response, and then writing the new data
rate to nonvolatile memory with the ATWS
command.

On subsequent power ups the interface will
always use the 38,400 baud rate.

ATWM xx yy zz aa or
ATWM xx yy zz aa bb or

OBDPro

http://www.obdpros.com

ATWM xx yy zz aa bb cc [set Wakeup
Message to…]

These commands allow the user to override
the default settings for the wakeup
messages. The user must provide the three
header bytes (xx yy zz), and either one (aa),
two (aa bb) or three data bytes (aa bb cc).
The checksum byte is automatically
calculated by the interface and should not
be provided.

The message provided will be periodically
sent at the rate determined by the AT SW
setting. The replies to this message are not
printed by the interface.

Byte values assigned with this command
are not affected by those set with other
commands (AT SH) and do not have any
effect on the transmission of normal OBD
request messages.

This command only applies for the ISO
9141 and ISO 14230 protocols.

Z [reset all]

This command causes the OBDPro to
perform a complete reset as if power were
cycled off and then on again. All settings are
returned to their default values, and the
OBDPro will be put in the idle state, waiting
for characters on the RS232 bus.

OBDPro

http://www.obdpros.com

AT Command Summary

General Commands

D set all to Defaults
E0 Echo Off
E1 Echo On
I print the ID
L0 Linefeeds Off (default set by pin 7)
L1 Linefeeds On
SCS Set Communication speed
WCS Write comm. speed
Z reset all

OBD Commands

BI Bypass the Initialization sequence
DP Describe the current Protocol
DPN Describe the Protocol by Number
H0 Headers Off (default)
H1 Headers On
MA Monitor All
MR hh Monitor for Receiver = hh
MT hh Monitor for Transmitter = hh
R0 Responses Off
R1 Responses On
SH yzz Set Header
SH xx yy zz Set Header
SP h Set Protocol to h
SP Ah Set Protocol to Auto, h and save
it
ST hh Set Timeout to hh x 4 msec

CAN Specific Commands

CF hhh set the ID Filter to hhh
CF hh hh hh hh set the ID Filter to
hhhhhhhh
CFC1 CAN Flow Control On
CFC0 CAN Flow Control Off
CM hhh set the ID Mask to hhh
CM hh hh hh hh set the ID Mask to
hhhhhhhh
CP hh set CAN Priority (only for 29 bit)

ISO Specific Commands

SW hh Set Wakeup interval to hh x 20
msec

WM xx yy zz aa set the Wakeup Message
WM xx yy zz aa bb “ “
WM xx yy zz aa bb cc “ “

Misc. Commands

CV dddd Calibrate the Voltage to dd.dd
volts
RV Read the Voltage

OBDPro

http://www.obdpros.com

AT Command examples:

Lets look at how we would send some
sample AT commands to the interface.
Once you plug in the interface to the OBD
connector in the vehicle and hookup the
serial connection type “ATI” and hit enter.

The interface will respond with “OBDPro
v1.0” or the custom version string that you
have instructed it to use.

Here is a screen representation of the
command.

>ATI
ELM327 1.0a compatible OBDPro v1.0

Next we will change the communication
speed

Type in atscs 4, the interface should
respond with OK and you should no
longer be able to type any characters
(Since your terminal was setup at the
default baud rate of 9600 and we just
changed the baud rate to 38,400).
Configure your terminal to use the higher
speed of 38,400 and then type in ati you
should see the “OBDPro v1.0” string
displayed at the new baud rate. In order to
save the baud rate for subsequent
sessions issue atwcs and the scantool will
respond with “OK”

Note that we did not use upper case
characters in this example, the OBDPro
interface will accept upper case (ATI) as
well as lower case (ati) or any
combination of these (Ati).

Also note that although we type in atscs 4
this is only to separate the commands and
make them more readable. You do not
have to add spaces, or if you wish, you
can add many spaces – it does not affect
the internal interpretation of the command.

Other AT Commands are used in the
same manner. Simply type the letters A
and T, follow by the command you want to

send, then any arguments that are
required for that command, and press
Enter.

OBD Commands

Any command sent to the OBDPro
interface that does not begin with “AT” is
assumed to be meant for the vehicle.
Each pair of ASCII bytes is validated to
ensure that they are hexadecimal digits,
and will then be combined into single data
bytes for transmitting to the vehicle. OBD
commands are actually sent to the vehicle
embedded in a data packet.

The OBDPro interface will normally limit
the number of bytes that can be sent to
seven (14 hexadecimal digits); the
maximum number allowed by the
standards. Attempts to send either an odd
number of hex digits, or too many digits
will result in an error – the entire
command is then ignored and a single
question mark printed.

As an example of sending a command to
the vehicle, assume that 01 00 is the
command that is required to be sent. In
this case, the user would type “01 00” and
hit Enter. The OBDPro interface would
store the characters as they are received,
and when the carriage return was
received, it would begin to assess the
command, convert it to a two byte value of
1 followed by a 0 add the header bytes
and a checksum byte and then send the
resulting total of 6 bytes to the vehicle.

Note: The carriage return character is only
a signal to the interface, and is not sent on
to the vehicle. After sending the
command, the interface listens on the
OBD bus for messages, looking for ones
that are directed to it. If a message
address matches, those received bytes
will be sent over the serial port, while
messages received that do not have
matching addresses will be ignored.
Sometimes a single command send to the
vehicle would result in multiple ECU’s

OBDPro

http://www.obdpros.com

reporting back, in order to allow for this
the OBDPro interface will wait for the
timeout specified by the ATST commandf
before it stops listening to the OBD bus.

Querying the vehicle for OBD data

The OBD II standards specify that each
group of bytes sent to the vehicle must
adhere to a set format. The first byte
(‘mode’ byte) describes the type of data
being requested, while subsequent bytes
specify the actual information required
(given by a ‘parameter identification’ or
PID number). The modes and PIDs are
described in detail in the SAE document
J1979 (ISO 15031-5).

The 9 diagnostic modes specified by
J1979 are
01 - show current data
02 - show freeze frame data
03 - show diagnostic trouble codes
04 - clear trouble codes and stored values
05 - test results, oxygen sensors
06 - test results, non-continuously
monitored
07 - show “pending” trouble codes
08 - special control mode
09 - request vehicle information

Within each mode, PID 00 is normally
reserved to show which PIDs are
supported by that mode.

Mode 01, PID 00 must be supported by all
vehicles, and can be accessed as follows:
Once the OBDPro interface is properly
connected to your vehicle, and powered,
with the ignition turned on, issue the mode
01 PID 00 command:
>01 00

You might see a bus initialization
message or a protocol search message
and then the response from the vehicle;
shown below is a representative
response.

41 00 BF BF B9 93

The 41 00 signifies a response (4) from a
mode 1 request from PID 00 (a mode 2,
PID 00 request is answered with a 42 00,
etc.). The next four bytes (BF, BF, B9, and
93) represent the requested data, in this
case a bit pattern showing the PIDs
supported by this mode (1=supported,
0=not).

Now lets query the vehicle for the coolant
temperature, this is PID 05 in mode 01,
and can be requested as follows:
>01 05

The response will be of the form:
41 05 3A

The 41 05 shows that this is a response to
a mode 1 request for PID 05, while the 3A
is the desired data. Converting the
hexadecimal 3A to decimal, we get 3 x 16
+ 10 = 58. This represents the current
temperature in degrees Celsius, but with a
zero offset to allow for subzero
temperatures. To convert to the actual
coolant temperature, you need to subtract
40 from the value obtained. So the actual
coolant temperature is 58 - 40 or 18 °C.

Multiline Responses

There are occasions when a vehicle must
respond with more information than one
‘message’ is able to show. In these cases,
it responds with several lines which must
be assembled into one complete
message. One example of this is a
request for the vehicle id number (VIN) of
the vehicle (mode 09, PID 02). This is a
multi line response that needs to be
assembled. One example from a SAE
J1850 PWM vehicle is shown below

>0902
49 02 01 31 46 41 46
49 02 02 50 33 36 33
49 02 03 38 59 57 32
49 02 04 39 31 31 31
49 02 05 33 00 00 00

OBDPro

http://www.obdpros.com

Note that all OBD compliant vehicles do
not provide this information. If your vehicle
does not support this parameter, you will
only see a “NO DATA” response. The first
two bytes (49 and 02) on each line of the
above response do not show any vehicle
information. They only show that this is a
response to a 09 02 request. Assembling
the remainder of the data and ignoring the
trailing zeroes gives:

31 46 41 46 50 33 36 33 38 59
57 32 39 31 31 31 33

Converting these hex digits to ASCII gives
the following serial number for the vehicle:

1 F A F P 3 6 3 8 Y W 2 9 1 1 1
3

CAN systems will display this information
in a format shown below

>0902
014
0: 49 02 01 59 56 31
1: 4D 53 33 38 32 32 36
2: 32 31 36 36 35 36 33

CAN Formatting has been left on (the
default), making the reading of the data
easier. With formatting on, the sequence
numbers are shown with a colon (‘:’) after
each, so that they clearly stand out (0:, 1:,
etc.). CAN systems add this hex digit (it
goes from 0 to F then repeats), to aid in
reassembling the data, just as the J1850
vehicle did. The first line of this response
says that there are 014 bytes of
information to follow. That is 14 in
hexadecimal, or 20 in decimal terms,
which agrees with the 6 + 7 + 7 bytes
shown on the three lines. Serial numbers
are generally 17 digits long however, so
how do we assemble the number from 20
digits? The second line shown begins with
the familiar 49 02, as this is a response to
a 09 02 request. Clearly they are not part
of the serial number. CAN will
occasionally add a third byte to the
response which we see next (‘01’)
showing the number of data items in the

response (the vehicle can only have one
VIN, so the response says there is only
one data item). That third byte can be
ignored. This leaves 17 data bytes which
are the serial number. All that is needed is
a conversion to ASCII in order to read
them, exactly as before.

A final example shows a different type of
multi line response that can occur when
two or more ECU’s all respond to one
request. The following is a typical
response to a 01 00 request:

>0100
41 00 80 10 80 01
41 00 BF BE B9 93

To find out which ECU is
sending the data we need to
turn on headers

>at h1
OK
>0100
7EA 06 41 00 80 00 00 01 AA
7E8 06 41 00 BF BF B9 93 AA

Now, if you analyze the header, you can
see that the third byte shows ECU 10 (the
engine controller) and ECU 18 (the
transmission) both responding. Usually
the multi line responses are relatively
straight-forward to decipher, but they do
take some practice.

Setting the Headers

The emissions related diagnostic trouble
codes as described in the SAE J1979
standard (ISO15031-5) represent only a
portion of the data that a vehicle may
have available – much more can be
obtained if you are able to direct the
requests elsewhere.

Example: In a GM vehicle the class 2
messages are used to even command the
body controller to execute a door unlock
etc.

OBDPro

http://www.obdpros.com

Accessing the OBDII diagnostics
information requires that requests be
made to what is known as a ‘functional
address.’ Any processor that supports the
function will respond to the request (and
theoretically, many different processors
can respond to a single functional
request). Every processor (or ECU) will
also respond to what is known as their
physical address. It is the physical
address that uniquely identifies each
module in a vehicle, and permits you to
direct more specific queries to only one
particular module.

To retrieve information beyond that of the
OBDII requirements then, it will be
necessary to direct your requests to either
a different functional address, or to an
ECU’s physical address. This is done by
changing the data in the message header.
As an example of functional addressing,
let us assume that you want to request
that the processor responsible for Engine
Coolant provide the current Fluid
Temperature. You do not know its
address, so you consult the SAE J2178
standard and determine that Engine
Coolant is functional address 48. J2178
also tells you that for your J1850 VPW
vehicle, a priority byte of A8 is
appropriate. Then, knowing that a scan
tool is normally address F1, you form the
information into the three header bytes of
A8 48 and F1.

To tell the ObdPro to use these new
header bytes, all that is needed is the Set
Header command:

Some requests, being of a low priority,
may not be answered immediately,
possibly causing a “NO DATA” result.
Such instances might require a longer
timeout period to get the response.
If you do not know the address, recall that
the sender of information is usually shown
in the third header byte. By monitoring
your system for a time with the headers
turned on (AT H1), you can quickly learn
the main addresses of the senders. When

you know the address, simply use it for
the second byte in the header. Physical
addressing is used by standards such as
SAE J2190 to provide a great deal of
vehicle information. Many of the details of
how to access this information (the PID
numbers, etc.) is proprietary and
manufacturers rarely share the info.

ISO14230 standard also specifies that the
first header byte must always include the
length of the data field. The interface
always determines the number of bytes
that you are sending, and inserts that
length automatically, so you only need to
provide the two format bits.

Addressing within the CAN (ISO 15765-4)
protocols is quite similar in many ways.
First, consider the 29 bit standard. The
OBDPro splits the 29 bits into a CAN
Priority byte and the three header bytes
that we are now familiar with. Figure 1
below shows how these are combined for
use by the OBDPro interface.

Figure 1 Setting the 29 bit CAN ID

The CAN standard states that for
diagnostics, the priority byte (‘vv’ in the
diagram) shall always be 1B. Using a
separate instruction to set these ‘priority’
bits should be only a minor
inconvenience, as they are rarely
changed. The next byte (‘xx’) describes
the type of message that this is, and is set
to hex DB for functional addressing, and
to DA if using physical addressing. The
next two bytes are as defined previously

OBDPro

http://www.obdpros.com

for the other standards - ‘yy’ is the
receiver (or Target Address), and ‘zz’ is
the transmitter (or Source Address). For
the functional diagnostic requests, the
receiver is always 33, and the transmitter
is F1.

Now let’s discuss the header used in 11
bit CAN systems. They also use a
priority/address structure, but shorten it
into roughly three nibbles rather than
three bytes. The OBDPro uses the same
commands to set these values as for
other headers, except that it only uses the
11 least significant bits of the provided
header bytes, and ignores the others (as
shown in Figure 2).

Figure 2 Setting the 11 bit CAN ID

It quickly becomes inconvenient to have to
enter six digits when only three are
required, so there is a special ‘short’
version of the AT SH command that
accepts three hex digits. It actually
operates by simply adding zeroes for you.

The 11 bit CAN standard typically makes
functional requests (ID/header = 7DF), but
receives physical replies (7En). With
headers turned on, it is a simple matter to
learn the address of the module that is
replying, then use that information to
make physical requests if desired. For
example, if the headers are on, and you
send 01 00, you might see:

>0100
7E8 06 41 00 BF BF B9 93 AA

The 7E8 shows that ECU#1 has
responded. In order to talk directly to that
ECU, all you need is to set the header to
the appropriate value (it is 7E0 – see ISO
15765-4 for more information). From that
point on, you can ‘talk’ directly to the ECU
using its physical address:
>atsh 7e0
>0100
7E8 06 41 00 BF BE B9 93 38
>0105
7E8 03 41 05 89 BE B9 93 38

Of course, it’s a little confusing seeing the
headers at all times, so you may want to
turn them off again.

Monitoring the Bus

Some vehicles use the OBD bus for
information transfer during normal vehicle
operation, passing a great deal of
information over it. To see how your
vehicle uses the OBD bus, you can enter
the OBDPro’s ‘Monitor All’ mode, by
sending the command AT MA from your
terminal program.

Once received, the interface will
continually display information that it sees
on the OBD bus, regardless of transmitter
or receiver addresses. Note that the
periodic ‘wakeup’ messages are not sent
while in this mode, so if you have an ISO
9141 or ISO 14230 bus that had been
initialized previously, it may ‘go to sleep’
while monitoring. The monitoring mode
can be stopped by sending any single
RS323 character to the interface.

The interface will start monitoring the bus
using the currently active protocol. In
some vehicles more than one protocol
might be used. Eq – For newer GM cars
the OBD messages use the CAN protocol
but some of the body electronics continue
to use the Class II protocol (J1850 VPW),
in this case if the interface was used for
getting diagnostics data from the vehicle
the interface will be set to the the CAN
bus and will monitor the vehicle in this

OBDPro

http://www.obdpros.com

mode also. If you want to monitor data on
the Class II bus the interface should be
switched to the J1850 VPW protocol by
issuing an ATSP 2 command.

If the “Monitor All’ command provides too
much information (specifically for the CAN
bus), then you can restrict the range of
data that is to be displayed. If we are only
interested in seeing messages that are
being transmitted by the ECU with
address 10. we could restrict the
messages by typing

>atmt 10

All messages that contain 10 in the third
byte of the header will be displayed.

This command also applies to the 11 bit
CAN systems the CAN ID is actually
stored as the least significant 11 bits in
the 3 byte ‘header storage’ location. It will
be stored with 3 bits in the receiver’s
address location, and the remaining 8 bits
in the transmitter’s address location. For
this example, we have requested that all
messages created by transmitter ‘10’ be
printed, so all 11 bit CAN IDs that end in
10 will be displayed (ie ‘x10’).

The AT MR command operates in a
similar fashion, but now it looks for
messages from being sent to a specific
address For example, to use it to look for
messages being sent to the ECU with
address 10 send
>AT MR 10

and all messages that contain 10 in the
second byte of the header will be
displayed. For 11 bit CAN ID’s this the
interface only looks at the least significant
three bits in the message To search for all
CAN messages that begin with a 2, then
you will need to use the command ‘AT MR
02’, and to see all of the 7xx’s, you will
need to use ‘AT MR 07’.

Monitoring Example:

Here we will discuss one example on how
you would use the ATMA command to
discover vehicle communication
messages. In some vehicles these
messages are used to control a number of
accessories such as the windows and
locks. One such vehicle is the 2006 GM
Trailblazer, where the commands to open
the windows and lock/unlock doors is sent
over the J1850 VPW bus.

Let’s investigate how to discover the
message used to open the windows. In
order to uncover what messages are sent
when you hit the power window button, we
need to first set the OBDPro Scantool to
monitor the J1850 VPW protocol.

Connect the OBDPro Scantool and issue
the command ATSP2. This forces the
OBDPro into using the J1850 VPW
protocol. Since we would like to also
identify the required header for sending
the window open message, we will also
issue the show headers command ATH1.
Now Issue the ATMA command to start
monitoring the bus.

You will see a bunch of messages being
sent by various modules as shown below

>atsp2
OK
>ath1
OK
>atma
C8 53 11 30 00 86
08 FF 97 03 68
08 FF 80 03 25
08 FF 89 03 33
88 83 11 0A 34 CC 33
88 25 29 07 00 97
08 FF 29 03 8F
08 FF 98 03 CB
08 FF 60 03 73
C8 53 11 30 00 86

Now hit the “open window” button and
carefully watch the messages scroll by on
the terminal you will see a bunch of
messages similar to this

68 CB A0 09 08 11 00 00 70 E2

OBDPro

http://www.obdpros.com

68 CB A0 09 02 11 00 00 70 41
C8 53 11 30 00 86
68 CB A0 09 08 11 00 00 70 E2
68 CB A0 09 01 11 00 00 70 FF

Repeatedly monitoring the messages
reveals that
68 CB A0 09 02 11 00 00 70 41
Might be the message for activating the
windows, as a further test lets monitor
messages that are meant for receiver
address 0xCB by issuing ATMR CB. Once
we issue this command we notice that we
only see messages when we hit the
window down or window up button in the
car. This confirms the window down
message. Now let’s issue the window
down message from the OBDPro
Scantool.

To do this we need to change the header,
we accomplish this by issuing the ATSH
command
ATSH 68 CB A0.

Then issue the command “09 02 11 00 00
70” and you should see the front
passenger window roll down.

CAN Message filtering

The monitoring commands (AT MA, MR
and MT) usually work very well with the
‘slower’ protocols – J1850, ISO 9141 and
ISO 14230. But they are not sufficient for
the CAN bus since there is a lot more
information passing over them. To help
reduce the amount of information seen by
the interface, it has a ‘filter’ that can be
used to pass only messages with specific
ID bits. A range of values can be
passed when the filter is used with a
‘mask’ to say which bits are relevant.

Example, consider an application where
you are trying to monitor for 29 bit CAN
diagnostic messages, exactly like the
OBDPro does. By definition, these
messages will be sent to the scan tool at
address F1. From ISO 15765-4, you know
then that the ID portion of the reply must

be of the form: 18 DA F1 xx where xx is
the address of the module that is sending
the message. To use the filter, then, enter
what you have into it, putting anything in
for the unknown portion (you will see why
in a moment). The command to set
the CAN filter is AT CF…
>AT CF 18 DA F1 00
How do you tell the OBDPro to ignore
those last two 0’s? You do that with the
mask. The mask is a set of bits that tell
the OBDPro which bits in the filter are
relevant. If the mask bit is 1, that filter bit
is relevant, and is required to match. If it is
0, then that filter bit will be ignored. All bits
in the above message are relevant,
except those of the last two digits. To set
the mask for this example then, you would
need to use the CAN Mask command, as
follows:
>AT CM 1F FF FF 00

If desired, you can convert the
hexadecimal to binary to see what has
been done. The 11 bit CAN IDs are
treated in the same manner. Recall that
they are stored internally in the
right-most 11 bits of the locations used for
29 bit CAN, which must be considered
when creating a filter or mask. As an
example, assume that we wish to display
all messages that have a 6 as the first
digit of the 11 bit ID.

We need to set a filter to look for 6 in that
digit:
>AT CF 00 00 06 00
The 11 bit ID is stored in the last three
locations, so the 6 would appear where it
is shown. Now, to make that digit relevant,
we create the mask:
>AT CM 00 00 0F 00

The system only uses the 11 right-most
bits in this case, so we can be lazy and
enter the F as shown (the first bit of the F
will be ignored, and it will be treated as if
we had entered a 7). Clearly, this can be
quite cumbersome if using 11 bit CAN
systems routinely. To help with that, the
OBDPro offers some shorter versions of

OBDPro

http://www.obdpros.com

the CF and CM commands. You need
only enter:
>AT CF 600
and
>AT CM F00
for the above example. The commands
work internally by simply entering the
extra 00’s for you. As for the full eight digit
versions, only the 11 least significant
(rightmost) digits are used, so you do not
need to take special care with the first bit.
With a little practice, these commands are
fairly easy to master. Initially, try entering
the filter and mask values, then use a
command such as AT MA to see what the
results are. The OBDPro knows that you
are trying to filter, and combines the
effects of both commands (it will do that
for MR and MT as well). The MA, MR and
MT commands also have the extra benefit
that if they are in effect, the OBDPro will
remain quiet, not sending
acknowledgement or error signals, so
anything you do while monitoring should
not disrupt others that are on the bus.
Note that if a filter has been set, it will be
used for all CAN messages, so standard
OBD requests may then respond with “NO
DATA”. If you are having trouble, reset
everything to the default values.

CAN Message Formats

The ISO 15765-4 standard defines
several message types that are to be
used with diagnostic systems. Currently,
there are four main ones that are used:

SF - the Single Frame
FF - the First Frame (of a multiframe
message)
CF - the Consecutive Frame (of a
multiframe message)
FC - the Flow Control frame

The Single Frame message contains
storage for up to seven data bytes and
what is known as a PCI (Protocol Control
Information) byte. The PCI byte is always

the first byte of them all, and tells how
many data bytes are to follow.

A First Frame message is used to say that
a multiframe message is about to be sent,
and tells the receiver just how many data
bytes to expect. The length descriptor is
limited to 12 bits, so a maximum of 4095
byes can be received at once using this
method. Consecutive Frame messages
are sent after the First Frame message to
provide the remainder of the data. Each
Consecutive Frame message includes a
single hex digit ‘sequence number’ that is
used to help with reassembling the data. It
is expected that if a message were
corrupted and resent, it could be out of
order by a few packets, but not by more
than 16. As seen previously, the serial
number for a vehicle is often a multi frame
response:

>0902
014
0: 49 02 01 31 47 4E
1: 45 53 31 33 4D 35 36
2: 32 32 31 38 32 33 34

In this example, the line that begins with
0: is the First Frame message. The length
(014) was actually extracted from the
message by the OBDPro scantool and
printed on the separate line as shown.

Following the First Frame line are two
Consecutive Frames as shown (1: and 2:).
To learn more details of the exact
formatting, you may want to send a
request such as the one above, then
repeat the same request with the headers
enabled (AT H1). This will show the PCI
bytes that are actually used to send these
components of the total message.

The Flow Control frame is one that you do
not normally have to deal with. When a
First Frame message is sent as part of a
reply, the OBDPro must tell the sender
some technical things such as how long to
delay between Consecutive Frames, etc.

OBDPro

http://www.obdpros.com

These are predefined by the ISO 15765-4
standard and are not alterable by the
user. The only thing that you can do with
them is to disable the sending of Flow
Control messages entirely (AT CFC0).
This may be required if experimenting with
a different CAN system.

Bus Initialization

Both the ISO 9141-2 and ISO 14230-4
(KWP2000) standards require that the
vehicle’s OBD bus be initialized before
any communications can take place. The
ISO 9141 standard allows for only a slow
(2 to 3 second) process, while ISO 14230
allows for both the slow method, and a
faster alternative. In either case, once the
bus has been initiated, communications
must take place at least once every five
seconds, or the bus will revert to a low-
power ‘sleep’ mode. The OBDPro takes
care of this bus initiation and the periodic
sending of ‘keep-alive’ or ‘wakeup’
messages for you – it is automatic and
requires no input from the user. The
OBDPro will not perform the bus initiation
until the first message needs to be sent,
however. During the automatic search
process, you will not see any status
reporting while the initiation process is
taking place, but if you have the Auto
option off, then you will see a message
similar to this:

BUS INIT: ...

The three dots appear only as the slow
initiation process is carried out - a fast
initiation does not show them. This will be
followed by either the expression ‘OK’ to
say it was successful, or else an error
message to indicate that there was a
problem. (The most common error
encountered is in forgetting to turn the
vehicles key to ‘ON’ before attempting to
talk to the vehicle.)

Once initiated, the OBDPro does what is
required to keep the bus alive, without any
intervention from the user. The automatic

messages being sent every few seconds
will be visible via the blinking OBD activity
LED’s.

Wakeup Messages

After an ISO 9141 or ISO 14230
connection has been established, periodic
activity on the bus need to occur in order
to maintain that connection. If normal
requests and responses are being sent,
that is usually sufficient, but occasionally
filler messages need to be sent to prevent
the connection from timing out. These
periodic messages are called ‘Wakeup
Messages.’ They keep the connection
alive, and prevent the circuitry from going
back to the idle or sleep mode.

OBDPro automatically creates and sends
these for you if there appears to be no
other activity there is nothing that you
need do to ensure that they occur. To see
these, once a connection is made, simply
monitor the OBD transmit LED - you will
see the periodic binks created when the
OBDPro send a wakeup message.

The standards state that if there is no
activity at least every five seconds, the
connection may close. To ensure that this
does not happen, by default the OBDPro
will send a wakeup message after three
seconds of inactivity. This time interval is
fully programmable, should you prefer
something different (see the AT SW
command).

The user has the capability to change the
wakeup message. To do this, refer to the
AT WM message format.

OBDPro

http://www.obdpros.com

Error Messages

BUFFER FULL

The OBDPro provides a 256 byte internal
RS232 transmit buffer so that OBD
messages can be received quickly,
stored, and sent to the computer at a
more constant rate. Occasionally
(particularly with CAN systems) the buffer
will fill at a faster rate than it is being
‘emptied.’ Eventually it becomes full, and
no more data can be stored (it is lost).
If you are receiving BUFFER FULL
messages, and are using a 9600 baud
data rate, try changing your data rate to
38400 baud. If you still receive BUFFER
FULL messages after that, consider some
of the filtering options (the MR, MT, CF
and CM AT Commands).

BUS BUSY

The OBDPro interface tried to send the
mode command or initialize the bus, but
detected too much activity to insert a
message. This could be because the bus
was in fact busy, but may be due a wiring
problem that is giving a continuously
active input.

BUS ERROR

A generic problem occured. This is most
often from an invalid signal being detected
(a long pulse, etc.) on the bus, or a wiring
error.

CAN ERROR

The CAN system had difficulty initializing,
sending, or receiving. Often this is simply
from not being connected to a CAN
system when you attempt to send a
message.

DATA ERROR

There was a response from the vehicle,
but the information was incorrect or could
not be recovered.

<DATA ERROR

The was an error in the line pointed to,
either from an incorrect checksum or a
problem with the format of the message
(the OBDPro still displays the data
received). There could have been a noise
burst which interfered, or a circuit
problem. Try re-sending the
command.

NO DATA

The OBDPro interface waited for the
period of time that was set by AT ST, but
detected no response from the vehicle. It
may be that the vehicle had no data to
offer, that the mode requested was not
supported, that the vehicle was attending
to higher priority issues, or in the case of
the CAN systems, the filter may have
been set to ignore the response. Try
adjusting the AT ST time to be sure that
you have allowed sufficient time to obtain
a response, or restoring the CAN filter to
its default setting.

<RX ERROR

An error was detected in the received
CAN data. This will usually only occur if
monitoring a CAN bus, while set for an
incorrect baud rate. Try a different
protocol.

UNABLE TO CONNECT
The OBDPro tried all of the available
protocols, and could not detect a
compatible one. This could be because
your vehicle uses an unsupported
protocol, or could be as simple as
forgetting to turn the ignition key on.
Check all of your connections, and the
ignition, then try the command again.

OBDPro

http://www.obdpros.com

?
This is the standard response for a
misunderstood command received on the
RS232 input. Usually it is due to a typing
mistake.

